

Penn State Architectural Engineering Senior Capstone Project Brett Miller | Construction Option Advisor: Dr. Ed Gannon

Project Overview

Research | Retaining Structures

Introduction

The Office Building Washington, D.C.

Analysis 2 | Neighboring Foundation Support

Analysis 1 | Foundation Walls

Analysis 3 | Value Engineering

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion Conclusion & Recommendations Acknowledgements

D	

Project Overview

Project Size	108,000 SF
Height Above Grade	9 Stories
Contract Value	\$30.5 million
ates of Construction	March 2013 – March 2015
Occupant	Undetermined
Primary Use	Office Building
Owner	Mid Atlantic Realty
General Contractor	James G. Davis Construction
Architect	Gensler

Presentation Outline

Project Overview **Research | Retaining Structures** Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Sheet Piling (A)

Soldier Piles and Lag (B)

Concrete Slurry Wal

Top Down Construct

С

Research | Retaining Structures

	Advantages	Disadvantages
	Watertight Excavation	Costly Time Consuming
gging	Less Expensive Faster	Loud Installation Not Watertight
ls (C)	Watertight Extreme Depths Foundation Walls	Extremely Costly Time Consuming
tion (D)	Fast Ground Stability	Geotech. Considerations

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion

Conclusion & Recommendations Acknowledgements

Analysis 1 | Foundation Walls

Problem Identification

Extensive support of excavation

60 Foundation wall box-outs

Formwork time/cost

Potential Solutions

Replace CIP with shotcrete to reduce formwork

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Total Cost Savings

The Office Building Washington, D.C.

Cost Comparison

Total	Cost
Cast-in-Place	\$314,943.96
Shotcrete	\$237,816.54
Savings	\$77,127.42

				 Cast-in-Place Shotcrete
1	Equip	ment	I	

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

The Office Building Washington, D.C.

Schedule Comparison

Final Sc	chedule
Cast-in-Place	48 Days
Shotcrete	15 Days
Savings	33 Days

Total Schedule Savings

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion Conclusion & Recommendations Acknowledgements

\$350,000.00 \$300,000.00 \$250,000.00 \$200,000.00 \$150,000.00 \$100,000.00 \$50,000.00 \$0.00

Analysis 1 | Foundation Walls

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion **Analysis 2 | Neighboring Foundation Support** Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Potential Solutions

Analysis 2 | Neighboring Foundation Support

Problem Identification

- Historic building on West property line
- Foundation needs supported
- Secant Wall duration
- Replace Secant Wall with Slurry Wall

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Analysis 2 | Neighboring Foundation Support

Total	Cost
Secant Wall	\$551,000
24" Slurry Wall	\$744,000
Additional Costs	\$193,000

The Office Building Washington, D.C.

Cost Comparison

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Total Schedule Savings

The	Office
Was	shingt

Final Sc	hedule
Secant Wall	15 Days
Slurry Wall	15 Days
Savings	0 Days

Mob/Demob

e Building ton, D.C.

Schedule Comparison

Analysis 2 | Neighboring Foundation Support

The Office Building Washington, D.C.

Secant Wall

24" Slurry Wall

\$193,000 0 Days

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Over budget

Expensive copper feeder

Potential Solutions

Replace copper wiring with less expensive system

Analysis 3 | Value Engineering

The Office Building Washington, D.C.

Problem Identification

Unforeseen costs

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering **Electrical Breadth | Sizing wire/Busway** Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Analysis 3 | Value Engineering

Sizing Aluminum Wiring

- 2500 *A* Load per Switchboard
- Table 310.15 (B)(16)
 - \downarrow 500 *kcmil* \rightarrow 310 *A*

```
\frac{2500\,A}{310\,A} = 8.06 \rightarrow 9\,Sets * 310\,A = 2790\,A
```

- Table 250 66
 - $\downarrow 500 \ kcmil_{AL} \rightarrow 1/0 \ AWG_{AL}$
- Table C.1
 - \downarrow (4)500 *kcmil* + (1) 1/0 → 4" Conduit

Sizing Aluminum Busway 2500 *A* Load per Switchboard GE Spectra Series Busway Table 8.1 \downarrow (2) bars $\rightarrow 1^{1}/_{8}$ "Thick per Phase & Neutral Table 11.1 Two bars per phase ↓ 4.5" × 15.0" 15.0" <u>___</u> 4.5"

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

Aluminum Wiring Cost Savings

Analysis 3 | Value Engineering

Total	Cost
Copper Wiring	\$330,436.85
Aluminum Wiring	\$313,076.71
Aluminum Busway	\$225,346.06

5% Savings

Aluminum Busway Cost Savings

The Office Building Washington, D.C.

Cost Comparison

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations**

Acknowledgements

Analysis 3 | Value Engineering

Presentation Outline

Project Overview Research | Retaining Structures Analysis 1 | Foundation Walls Cost Schedule Conclusion Analysis 2 | Neighboring Foundation Support Cost Schedule Conclusion Analysis 3 | Value Engineering Electrical Breadth | Sizing wire/Busway Cost Schedule Conclusion **Conclusion & Recommendations** Acknowledgements

\$350,000.00 \$300,000.00 \$250,000.00 \$200,000.00 \$150,000.00 \$100,000.00

\$400,000.00

\$50,000.00

\$0.00

Cost

Analysis 3 | Value Engineering

\$105,000 5 Days

Presentation Outline		Analysis 1
Project Overview		
Research Retaining Structures		
Analysis 1 Foundation Walls		Cost Impa
Cost		
Schedule	Total Savings	Schedule
Conclusion	iotal outings	Conocado
Analysis 2 Neighboring Foundation Support		_
Cost		Recomme
Schedule	\$182,000	
Conclusion		
Analysis 3 Value Engineering		Analysis 2
Electrical Breadth Sizing wire/Busway	38 Days	
Cost		
Schedule		
Conclusion		
Conclusion & Recommendations		
Acknowledgements		

Conclusion & Recommendations

The Office Building Washington, D.C.

Foundation Walls

- act: Save \$77,000
- Save 33 Days
- endation: Select Shotcrete

Neighboring Foundation Support

Cost Impact: \$193,000 More Expensive

Schedule: No Advantage

Recommendation: Select Secant Wall

Analysis 3 | Value Engineering

Cost Impact: Aluminum Wire Saves \$17,000

Aluminum Busway Saves \$105,000

Schedule: Aluminum Wire Takes 4 More Days

Aluminum Busway Saves 5 Days

Recommendation: Select Aluminum Busway

Academic Acknowledgements

Dr. Ed Gannon Dr. Robert Leicht Dr. Craig Dubler

Acknowledgements

Industry Acknowledgements

$\mathbf{M} \mathbf{R} \mathbf{P} \mid \mathbf{R} \in \mathbf{A} \perp \mathbf{T} \mathbf{Y}$

Gensler

Special Thanks

The Office Building Washington, D.C.

The DAVIS Project Team Will Cox – DAVIS Project Manager Drew Heilman – DAVIS Project Engineer Rebecca Nordby – Balfour Beatty Project Executive PACE Industry Members Friends and Family

System	P1	P2	Р3	Total
Cast-in-Place	12	12	24	48
	12	Ĭ	27	-10
Shotcrete	4.5	4	6.5	15
Savings	19.5	8	5.5	33

Appendix A | Foundation Walls

System	Material	Labor	Equipment	Total
Cast-in-Place	\$229,583.19	\$69,120.00	\$16,240.77	\$314,943.96
Shotcrete	\$186,587.54	\$30,240.00	\$20,989.00	\$237,816.54
Savings	\$42,995.65	\$38,880.00	-\$4,748.23	\$77,127.42

	Cast-in-Place Concrete Cost Breakdown														
Floor	Volume (cu yd)	Concrete Unit Cost (\$/cu yd)	Concrete Cost	Formwork Unit Cost (\$/ft)	Formwork Cost	Rebar Cost	Total Material Cost	Labor Unit Cost (\$/Day)	Labor Cost	Equipment Unit Cost (\$/cu yd)	Equipment Cost	Total			
Р3	205	118.41	\$24,274.05	\$78.37	\$25,901.29	\$21,021.39	\$71,196.73	\$1,440.00	\$34,560.00	24.57	5036.85	\$110,793.58			
P2	188	118.41	\$22,261.08	\$78.37	\$23,746.11	\$18,987.06	\$64,994.25	\$1,440.00	\$17,280.00	24.57	4619.16	\$86,893.41			
P1	268	118.41	\$31,733.88	\$78.37	\$33,855.84	\$27,802.49	\$93,392.21	\$1,440.00	\$17,280.00	24.57	6584.76	\$117,256.97			
Total:			\$78,269.0 1		\$83,503.24	\$67,810.94	\$229,583.19		\$69,120.00		\$16,240.77	\$314,943.96			

CIP Sche	dule Bre	akdown
Floor	Wall Length (ft)	Duration (Day)
Р3	330.5	24
P2	303.0	12
P1	432.0	12
Total	1066	48

Appendix A | Foundation Walls

			_	Shot	crete Cost Bro	eakdown				_
Floor	Volume (cu yd)	Concrete Unit Cost (\$/cu yd)	te Concrete Rebar Cost Cost Cost Cost Cost Cost Cost Cost		Labor Cost	Equipment Unit Cost (\$/cu yd)	Equipment Cost	Total		
Р3	234	\$157.32	\$36,812.88	\$21,021.39	\$57,834.27	\$2,016.00	\$9,072.00	\$27.80	\$6,505.20	\$73,411.47
P2	216	\$157.32	\$33,981.12	\$18,987.06	\$52,968.18	\$2,016.00	\$8,064.00	\$27.80	\$6,004.80	\$67,036.98
P1	305	\$157.32	\$47,982.60	\$27,802.49	\$75,785.09	\$2,016.00	\$13,104.00	\$27.80	\$8,479.00	\$97,368.09
Total	755		\$118,776.60	\$67,810.94	\$186,587.54		\$30,240.00		\$20,989.00	\$237,816.54

Shotcrete	Shotcrete Schedule Breakdown											
Floor	Volume (cu yd)	Duration (Day)										
Р3	234	4.5										
P2	216	4										
P1	305	6.5										
Total	755	15										

System

Secant Wall Syste

24" thick Slurry V

Savings

Appendix B | Neighboring Foundation

Th	e (Dff	ice
W	as	hir	ngt

	Cost Comparison												
	Material	Labor / Manpower	Equipment	Transportation / Mobilization	Grand Total								
em	\$230,000	\$117,000	\$78,000	\$126,000	\$551,000								
/all	\$408,000	\$86,000	\$70,000	\$180,000	\$744,000								
	-\$178,000	\$31,000	\$8,000	-\$54,000	-\$193,000								

Schedule Cor	nparison					
System	Duration					
Secant Wall System	Mob/demob	1 Week				
	Wall	2 Weeks				
24" thick Slurry Wall	Mob/demob	2 Weeks				
	Wall	1 Week				

e Building gton, D.C.

Table 310.15(B)(16) (formerly Table 310.16) Allowable Ampacities of Insulated Conductors Rated Up to and Including 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)*

		Temperature I	Rating of Conduct	or [See Tab	le 310.104(A).]		
	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)	
Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
		COPPER		ALUM	IINUM OR COP ALUMINUM	PER-CLAD I	Size AWG or kcmil
18 16 14** 12** 10** 8	15 20 30 40	 20 25 35 50	14 18 25 30 40 55	15 25 35	20 30 40	 25 35 45	
6 4 3 2 1	55 70 85 95 110	65 85 100 115 130	75 95 115 130 145	40 55 65 75 85	50 65 75 90 100	55 75 85 100 115	6 4 3 2 1
1/0 2/0 3/0 4/0	125 145 165 195	150 175 200 230	170 195 225 260	100 115 130 150	120 135 155 180	135 150 175 205	1/0 2/0 3/0 4/0
250 300 350	215 240 260	255 285 310	290 320 350	170 195 210	205 230 250	230 260 280	250 300 350
500	320	380	430	260	310	350	500
600 700 750 800 900	350 385 400 410 435	420 460 475 490 520	475 520 535 555 585	285 315 320 330 355	340 375 385 395 425	385 425 435 445 480	600 700 750 800 900
1000 1250 1500 1750 2000	455 495 525 545 555	545 590 625 650 665	615 665 705 735 750	375 405 435 455 470	445 485 520 545 560	500 545 585 615 630	1000 1250 1500 1750 2000

Size of Largest Service-Entrand or Equivalen Parallel Co (AWG/k	Ungrounded ce Conductor it Area for nductors ccmil)	Size Electr (A	of Grounding ode Conductor WG/kcmil)
Copper	Aluminum or Copper-Clad Aluminum	Copper	Aluminum o Copper-Clac Aluminum
2 or smaller	1/0 or smaller	8	6
1 or 1/0	2/0 or 3/0	6	4
2/0 or 3/0	4/0 or 250	4	2
Over 3/0 through 350	Over 250 through 500	2	1/0
Over 350 through 600	Over 500 through 900	1/0	3/0
Over 600 through 1100	Over 900 through 1750	2/0	4/0
Over 1100	Over 1750	3/0	250

*Refer to 310.15(B)(2) for the ampacity correction factors where the ambient temperature is other than 30°C (86°F). **Refer to 240.4(D) for conductor overcurrent protection limitations.

Appendix C | Electrical Breadth

Table 250.66 Grounding Electrode Conductor for Alternating-Current Systems

					CONDU	CTORS										
	Conductor		Metric Designator (Trade Size)													
Туре	(AWG kcmil)	16 (½)	21 (¾)	27 (1)	35 (1¼)	41 (1½)	53 (2)	63 (2½)	78 (3)	91 (3½)	103 (4)					
RHH,	14	4	7	11	20	27	46	80	120	157	201					
RHW,	12	3	6	9	17	23	38	66	100	131	167					
RHW-2	10	2	5	8	13	18	30	53	81	105	135					
	8	1	2	4	7	9	16	28	42	55	70					
	6	1	1	3	5	8	13	22	34	44	56					
	4	1	1	2	4	6	10	17	26	34	44					
	3	1	1	1	4	5	9	15	23	30	- 38					
	2	1	1	1	3	4	7	13	20	26	33					
	1	0	1	1	1	3	5	9	13	17	22					
	1/0	0	1	1	1	2	4	7	11	15	19					
	2/0	0	1	1	1	2	4	6	10	13	17					
	3/0	0	0	1	1	1	3	5	8	- 11	14					
	4/0	0	0	1	1	1	3	5	7	9_	12					
	250	0	0	0	1	1	1	3	5	7	9					
	300	0	0	0	1	1	1	3	5	6	8					
	350	0	0	0	1	1	1	3	4	6	7					
	400	0	0	0		1		2	4	5	7					
	500	0	0	0	0	1	1	2	3	4	6					
	600	0	0	0	0	1	1	1	3	4	3					
	700	0	0	0	0	0	1	1	2	3	4					
	750	0	0	0	0	0	1	1	2	3	4					
	800	0	0	0	0	0	1	1	2	3	4					
	900	0	0	0	0	0	1	1	1	3	3					
	1000	0	0	0	0	0	1	1	1	2	3					
	1250	0	0	0	0	0	0	1	1	1	2					
	1500	0	0	0	0	0	0	1	1	1	1					
	1750	0	0	0	0	0	0	1	1	1	1					
	2000	0	0	0	0	0	0	1	1	1						

The Office Building

Copper Wiring Breakdown

Master Format Code	Description	Unit	Length	Material Unit Cost	Total Material	Labor Unit Cost	Total Labor	Total	Crew	# of Crews	Labor Hours	Duration (hrs)	Master Format Code	Description	Unit	Length	Material Unit Cost	Total Material	Labor Unit Cost	Total Labor	Total	Crew	# of Crews	Labor Hours	Duration (hrs)
260519900490	500 kcmil Copper Conductor	CLF	96.46	\$1,186.75	\$114,473.91	\$833.04	\$80,355.04	\$194,828.94	3 Elec	3	5	161	260519900800	500 kcmil Aluminum Conductor	C.L.F.	124.02	\$398.95	\$49,477.78	\$221.52	\$27,472.91	\$76,950.69	3 Elec	3	4	166
260519900260	1/0 kcmil Copper Grounding Conductor	CLF	24.115	\$253.51	\$6,113.39	\$402.48	\$9,705.81	\$15,819.20	2 Elec	3	2.424	20	260519900620	1/0 Aluminum Grounding Conductor	C.L.F.	31.005	\$111.10	\$3,444.66	\$111.28	\$3,450.24	\$6,894.89	2 Elec	3	2	21
260533131140	4" Diameter Metal Conduit	LF	2411.5	\$25.25	\$60,890.38	\$38.07	\$91,805.81	\$152,696.18	2 Elec	3	0.229	185	260533131140	4" Diameter Metal Conduit	L.F.	3100.5	\$25.25	\$78,287.63	\$38.07	\$118,036.04	\$196,323.66	2 Elec	3	0.2	207
Total					\$181,477.67		\$148,959.18	\$330,436.85				366	Total	1	1			\$131,210.06		\$181,866.65	\$313,076.71				394

Appendix D | Value Engineering

Aluminum Wiring Breakdown

Aluminum Busway Breakdown

Master Format Code	Description	Unit	Length	Material Unit Cost	Total Material	Labor Unit Cost	Total Labor	Total	Crew	# of Crews	Labor Hours	Duration (hrs)
262513104620	Feeder Al Busway 2500 amp	L.F	200.5	\$484.80	\$97,202.40	\$147.68	\$29,609.84	\$126,812.24	2 Elec	2	1.333	134
262513100330	Plug-in Al Busway 2500 amp	L.F	144	\$398.95	\$57,448.80	\$126.88	\$18,270.72	\$75,719.52	2 Elec	2	1.143	83
262513106470	Busway End Box 2500 amp	Ea.	2	\$1,136.25	\$2,272.50	\$738.40	\$1,476.80	\$3,749.30	2 Elec	1	13.333	27
262513105520	Busway Elbow 2500 amp	Ea.	10	\$1,464.50	\$14,645.00	\$442.00	\$4,420.00	\$19,065.00	2 Elec	1	8	80
Total					\$171,568.70		\$53,777.36	\$225,346.06				324